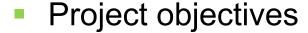


26th World Gas Conference

1 – 5 June 2015, Paris, France


FOLD project: Pipeline Monitoring, Fibre Optic gas Leak Detection

Grégoire AUDOUIN, Total E&P

Project aim

- State of the art: leak detection systems
- Computational techniques limited to 2-3% detection limit (of pipeline full bore flow-rate) and need for metering skid at the pipeline inlet and outlet
- Dynamic pressure based leak detection systems have limited performances for non stabilized fluids and irregular flows (E&P specificity)

- Quantify FO LDS performances in term of detection time and detectable leakage rate
- Optimize implementation and provide project decision data
- Compare systems performances with project specific risk analysis

Why this project? Operations Feedback

Indecision during construction phase on fibre optic cable installation

for leak detection

- Rational for deciding whether or not to install fibre optic (communication and leak detection purposes) at project phase
- Decision to invest on Engineering for cable deployment along subsea flow-lines for leak detection.

Project overall organisation

Partners

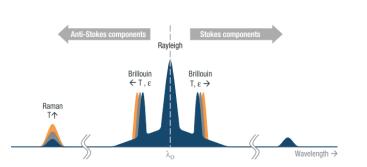
INERIS

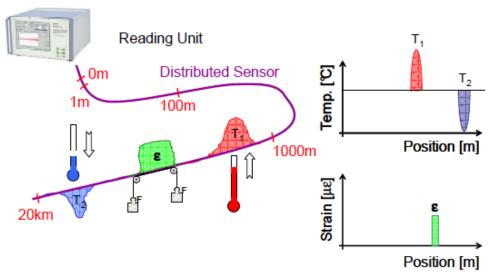
Contractors

INERIS

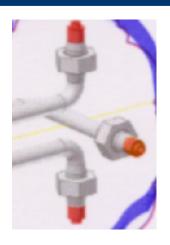
INS integrators or service suppliers

Data analysis

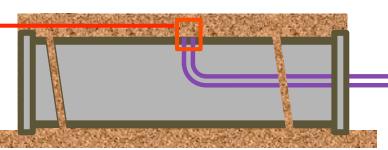

Manufacturers



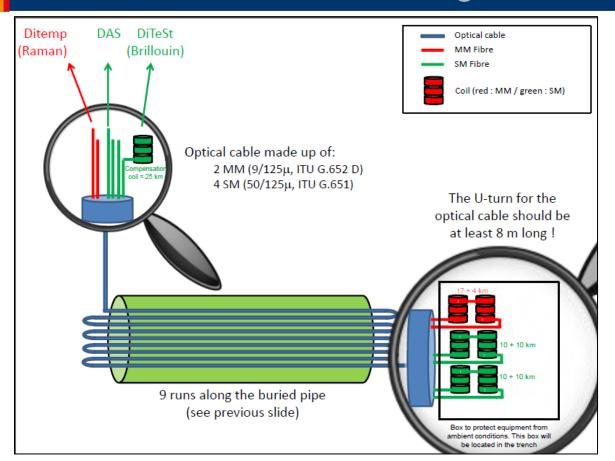
Fibre optic distributed sensing



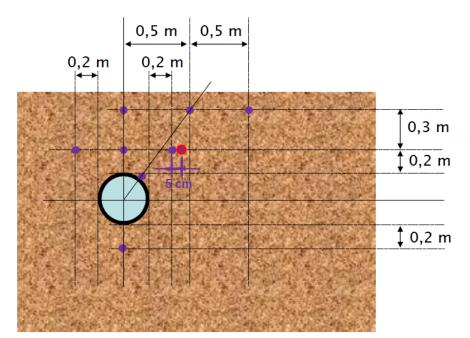



Leakage from the buried pipeline

Rupture disks and calibrated holes



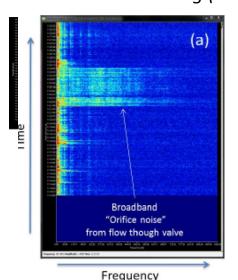
Tests bench: General arrangement

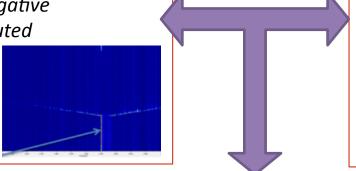


Fibre optic cable deployment

- Practical locations during pipe installation
- Directly buried or in a conduit

- Glass fibers with water blocking tape
- Stainless stell loose tube, 316I
- Bend insensitive optical fibers

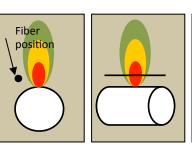


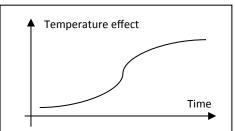


FO leak detection principle

Based on different physical parameters indicating a leak

Leakage noise detection / negative pressure pulse with distributed acoustic sensing (DAS)

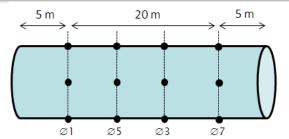


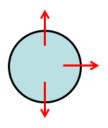

Environment baseline changes:

Ground movement and crater formation due to a leak

Small changes temperature

Distributed
temperature sensing
(DTS) of gas
decompression
temperature drop or
hot fluid leakage
within the ground





Test Matrix

Test parameters

Calibrated orifice Ø	Rupture disk	Gas	Fluid Pressure	Leak positions	Soil type
1, 3, 5 & 7	With or	CH4 & H2	40, 70 &	12:00,	Sand or
mm	without		100 bars	3:00 &	clay
				6:00	

Test bench construction update

Conclusions

- Results to be delivered before October 2015
- Realistic test bench for technology acceptance within projects
- Realistic expectations from systems and adaptation to specific risk assessments